3.9.89 \(\int \frac {1}{(d+e x)^2 (c d^2+2 c d e x+c e^2 x^2)^{3/2}} \, dx\)

Optimal. Leaf size=38 \[ -\frac {1}{4 e (d+e x) \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 38, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {642, 607} \begin {gather*} -\frac {1}{4 e (d+e x) \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)^2*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(3/2)),x]

[Out]

-1/(4*e*(d + e*x)*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(3/2))

Rule 607

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(2*(a + b*x + c*x^2)^(p + 1))/((2*p + 1)*(b + 2
*c*x)), x] /; FreeQ[{a, b, c, p}, x] && EqQ[b^2 - 4*a*c, 0] && LtQ[p, -1]

Rule 642

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[e^m/c^(m/2), Int[(a +
b*x + c*x^2)^(p + m/2), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && EqQ[
2*c*d - b*e, 0] && IntegerQ[m/2]

Rubi steps

\begin {align*} \int \frac {1}{(d+e x)^2 \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \, dx &=c \int \frac {1}{\left (c d^2+2 c d e x+c e^2 x^2\right )^{5/2}} \, dx\\ &=-\frac {1}{4 e (d+e x) \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 26, normalized size = 0.68 \begin {gather*} -\frac {c (d+e x)}{4 e \left (c (d+e x)^2\right )^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)^2*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(3/2)),x]

[Out]

-1/4*(c*(d + e*x))/(e*(c*(d + e*x)^2)^(5/2))

________________________________________________________________________________________

IntegrateAlgebraic [B]  time = 1.10, size = 338, normalized size = 8.89 \begin {gather*} \frac {2 c^2 \left (c d^8 e-15 c d^4 e^5 x^4-64 c d^3 e^6 x^5-96 c d^2 e^7 x^6-64 c d e^8 x^7-16 c e^9 x^8\right )+2 c^2 \sqrt {c e^2} \left (d^7-d^6 e x+d^5 e^2 x^2-d^4 e^3 x^3+16 d^3 e^4 x^4+48 d^2 e^5 x^5+48 d e^6 x^6+16 e^7 x^7\right ) \sqrt {c d^2+2 c d e x+c e^2 x^2}}{d^4 e x^4 \sqrt {c d^2+2 c d e x+c e^2 x^2} \left (-8 c^4 d^3 e^5-24 c^4 d^2 e^6 x-24 c^4 d e^7 x^2-8 c^4 e^8 x^3\right )+d^4 e x^4 \sqrt {c e^2} \left (8 c^4 d^4 e^4+32 c^4 d^3 e^5 x+48 c^4 d^2 e^6 x^2+32 c^4 d e^7 x^3+8 c^4 e^8 x^4\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/((d + e*x)^2*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(3/2)),x]

[Out]

(2*c^2*Sqrt[c*e^2]*Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2]*(d^7 - d^6*e*x + d^5*e^2*x^2 - d^4*e^3*x^3 + 16*d^3*e^4
*x^4 + 48*d^2*e^5*x^5 + 48*d*e^6*x^6 + 16*e^7*x^7) + 2*c^2*(c*d^8*e - 15*c*d^4*e^5*x^4 - 64*c*d^3*e^6*x^5 - 96
*c*d^2*e^7*x^6 - 64*c*d*e^8*x^7 - 16*c*e^9*x^8))/(d^4*e*x^4*Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2]*(-8*c^4*d^3*e^
5 - 24*c^4*d^2*e^6*x - 24*c^4*d*e^7*x^2 - 8*c^4*e^8*x^3) + d^4*e*Sqrt[c*e^2]*x^4*(8*c^4*d^4*e^4 + 32*c^4*d^3*e
^5*x + 48*c^4*d^2*e^6*x^2 + 32*c^4*d*e^7*x^3 + 8*c^4*e^8*x^4))

________________________________________________________________________________________

fricas [B]  time = 0.40, size = 97, normalized size = 2.55 \begin {gather*} -\frac {\sqrt {c e^{2} x^{2} + 2 \, c d e x + c d^{2}}}{4 \, {\left (c^{2} e^{6} x^{5} + 5 \, c^{2} d e^{5} x^{4} + 10 \, c^{2} d^{2} e^{4} x^{3} + 10 \, c^{2} d^{3} e^{3} x^{2} + 5 \, c^{2} d^{4} e^{2} x + c^{2} d^{5} e\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^2/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2),x, algorithm="fricas")

[Out]

-1/4*sqrt(c*e^2*x^2 + 2*c*d*e*x + c*d^2)/(c^2*e^6*x^5 + 5*c^2*d*e^5*x^4 + 10*c^2*d^2*e^4*x^3 + 10*c^2*d^3*e^3*
x^2 + 5*c^2*d^4*e^2*x + c^2*d^5*e)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {sage}_{0} x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^2/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

maple [A]  time = 0.05, size = 35, normalized size = 0.92 \begin {gather*} -\frac {1}{4 \left (e x +d \right ) \left (c \,e^{2} x^{2}+2 c d e x +c \,d^{2}\right )^{\frac {3}{2}} e} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^2/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2),x)

[Out]

-1/4/e/(e*x+d)/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2)

________________________________________________________________________________________

maxima [A]  time = 1.36, size = 61, normalized size = 1.61 \begin {gather*} -\frac {1}{4 \, {\left (c^{\frac {3}{2}} e^{5} x^{4} + 4 \, c^{\frac {3}{2}} d e^{4} x^{3} + 6 \, c^{\frac {3}{2}} d^{2} e^{3} x^{2} + 4 \, c^{\frac {3}{2}} d^{3} e^{2} x + c^{\frac {3}{2}} d^{4} e\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^2/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2),x, algorithm="maxima")

[Out]

-1/4/(c^(3/2)*e^5*x^4 + 4*c^(3/2)*d*e^4*x^3 + 6*c^(3/2)*d^2*e^3*x^2 + 4*c^(3/2)*d^3*e^2*x + c^(3/2)*d^4*e)

________________________________________________________________________________________

mupad [B]  time = 0.48, size = 37, normalized size = 0.97 \begin {gather*} -\frac {\sqrt {c\,d^2+2\,c\,d\,e\,x+c\,e^2\,x^2}}{4\,c^2\,e\,{\left (d+e\,x\right )}^5} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((d + e*x)^2*(c*d^2 + c*e^2*x^2 + 2*c*d*e*x)^(3/2)),x)

[Out]

-(c*d^2 + c*e^2*x^2 + 2*c*d*e*x)^(1/2)/(4*c^2*e*(d + e*x)^5)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (c \left (d + e x\right )^{2}\right )^{\frac {3}{2}} \left (d + e x\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**2/(c*e**2*x**2+2*c*d*e*x+c*d**2)**(3/2),x)

[Out]

Integral(1/((c*(d + e*x)**2)**(3/2)*(d + e*x)**2), x)

________________________________________________________________________________________